ELEKTRO INDONESIA Edisi Perdana, Maret 1996
TELEKOMUNIKASI
Kontrol Kongesti pada Jaringan Frame Relay
Pendahuluan
Terjadinya kontrol kongesti pada jaringan bila
terjadi kelebihan beban. Ada dua kemungkinan mengatasi
kelebihan beban dalam jaringan :
- Panggilan yang baru di blok,dan
- Menyesuaikan dengan situasi jaringan (membuat sumber-
sumber baru atau dengan mengurangi perintah di dalam jaringan
atau dengan mengurangi tambahan servis).
Suatu jaringan Frame Relay membawa keuntungan data "bursty" pada trafik
sebagaimana keputusan memblok panggilan baru hanya
dilaksanakan jika kapasitas kombinasi rata-rata (tidak
maksimum) pada arus panggilan akan dilebihkan. Solusi dari
kongesti dalam jaringan Frame Relay adalah mencoba
mengadabtasikan jumlah masukan dari frame-frame ke dalam
bagian arus kongesti. Sebab "flow control" tidak tersedia pada
layer-2 interface user-network (flow control dalam Frame Relay
terjadi pada end-to-end), ini tidak dapat digunakan untuk
mengontrol "kongesti" seperti kasus dalam beberapa jaringan
packet-switch. Atau jika terjadi kongesti, masing-masing user
harus mendeteksi kongesti secara "implisit"(dengan
mengamati beberapa penggunaan servis), atau ketika jaringan
mendeteksi suatu keadaan kongesti, secara "eksplisit" harus
diberitahukan kepada user. User harus mengambil tindakan
mengurangi jumlah frame-frame yang dimasukkan ke dalam
jaringan.
Kongesti terjadi ketika sumber jaringan kelebihan
beban, sumber akan menjadi individual transmission link,
kelompok buffer penuh pada node-intermediate atau pada
sistem tujuan atau proses dalam salah satu dari sistem-sistem
ini. Kongesti mungkin juga terjadi karena adanya
gangguan.
Bahwa kontrol kongesti tidak dapat tercapai dengan
menambahkan sumber-sumber dalam jaringan dalam formasi
kapasitas buffer atau menambah kecepatan link lebih tinggi.
Kedua-duanya tidak dapat dikontrol dengan konfigurasi balans;
sebab kejadian trafik dapat diramalkan, kemacetan masih dapat
terjadi. Kongesti mungkin "inherent" terjadi dalam beberapa
jaringan packet dan jaringan Frame Relay tanpa kecuali. Sebab
itu hal ini penting untuk memiliki "strategi" kontrol kongesti
untuk jaringan Frame Relay.
Jika beban trafik terus meningkat, kongesti akan menjadi semakin serius (parah) dan beban
prosesor sistem akan semakin berat, serta dapat mengakibatkan
kegagalan sistem. Untuk mencegah terjadinya kegagalan sistem
ini, diperlukan suatu kontrol kongesti yang dapat mengurangi
beban sistem.
Indikator-indikator dan cara mengatasi kongesti
Gambar 1 menunjukkan bentuk karakteristik kinerja
throughput dari sebuah jaringan"store" dan "forward". Kurva
dapat dibagi menjadi 3 (tiga) daerah kongesti dari level jaringan.
Daerah-daerah ini dapat dianggap sebagai indikator-indikator
kongesti yang mana mungkin dilakukan pendekatan untuk
melakukan pengontrolan kongesti dalam masing-masing daerah
tersebut. Daerah di bawah menunjukkan tidak ada kongesti.
Kongesti "moderat" terjadi antara "knee" dan "cliff",
sumber-sumber bisa saja melebihi dan sesuai dengan Qualiy of
Service (QOS) (throughput, delay atau frame loss) tidak dapat
dipertahankan.
Dengan menetapkan daerah kinerja jaringan suatu
pendekatan skema kongesti dapat diimplementasikan untuk
mengatasi kongesti yang mana akan mengarahkan bentuk kurva
dengan 2 (dua) daerah pertama dan mencegahnya melewati
daerah cliff. Rencana penanggulangan kongesti memiliki banyak
obyek angka masukan frame discard yang diminimumkan,
mempertahankan QOS, mencegah suatu single-user dari
monopoli penggunaan jaringan dan membatasi timbulnya
kongesti pada jaringan tersebut atau pada jaringan yang lain.
Suatu rencana pencegahan yang baik akan jadi mudah untuk
dilaksanakan dan akan menghasilkan penambahan jaringan
trafik minimal.
Pendekatan untuk kontrol kongesti dalam jaringan Frame Relay
Ada 3 (tiga) pendekatan utama untuk kontrol
kongesti dalam jaringan Frame Relay :
- User mendeteksi secara implisit daerah kongesti pada jaringan,
- User dapat mengindikasi jaringan yang mana dari frame-frame mungkin
dibuang pada saat terjadi kongesti, dan
- Pemberitahuan diberikan pada user pada saat jaringan itu sendiri mendeteksi
adanya kongesti.
CCITT memberikan Rekomendasi I.370 tentang
manajemen kongesti untuk ISDN tentang frame relaying bearer
service, yaitu tindakan untuk menyelesaikan pencegahan
kongesti dihubungkan dengan respon pada jaringan dan end-
user. Rekomendasi juga menetapkan bahwa meskipun
pemberitahuan kongesti tidak sesuai perintah, ini sangat
diperlukan.
User dapat menetapkan kongesti yang implisit
didasarkan pada suatu jumlah parameter-parameter sebagai
contoh jumlah REJ yang diterima, rate kehilangan frame yang
terjadi atau throughput dari call. Kontrol biasanya digunakan
dengan memvariasikan ukuran window. Untuk contoh di dalam
sistem prediksi-dasar yang digambarkan belakangan ini,
perbedaan window meningkatkan/menurunkan "algoritma"
yang digunakan tergantung daerah kongesti mana yang
diantisipasi.
Di dalam rencana (scheme) Bandwidth Management
(BMW), end-user menegosiasi dengan jaringan selama tahap
pembentukan call bagi suatu jaminan throughput (Committed
Information Rate = CIR). Selama tahap pentransferan data,
jaringan memonitor rate dari frame yang mana yang dikirim oleh
end-user. Jika rate kedatangan berlebihan sesuai throughput
yang disetujui, beberapa frame dikirim di atas level yang diberi
label (menggunakan indikator Discard Eligibility = DE) sesuai
kelebihan frame. Frame-frame yang dikirim di bawah level diberi
label committed frames. Pada saat jaringan terjadi kongesti,
kelebihan frame dibuang. Ketika tidak terjadi kongesti, end-user
mungkin meningkatkan rate pengiriman di atas negosiasi yang
disetujui. Penerapan BMW untuk call admittance dan kontrol
kongesti digunakan dalam jaringan ATM.
Secara eksplisit skema
dasar pada jaringan mengetahui antrian buffer occupancy dan
tingkat yang mana dari link individu yang mungkin overload
(kelebihan beban). Informasi Explicit Binary Feedback (EBF)
dapat digunakan langsung pada kondisi kongesti, dan dalam
rekomendasi I.370 menjelaskan daerah kongesti. Untuk transfer
kontrol-tujuan (tempat untuk rate-control yang mana biasanya
berfungsi pada layer-transport) untuk meneruskanpemberitahuan kongesti secara eksplisit. Dalam keadaaan
transfer kontrol-sumber (dimana informasi menyusun window
dengan baik) mengirimkan informasi langsung pada backward
memberitahu kongesti secara eksplisit. Pemberitahuan yang
mungkin dapat mengidikasikan letak dalam frame yang
menormalkan travelling langsung tepat pada sisa overhead (di
atas) dengan teknik pendekatan.
Satu lagi bentuk secara eksplisit
yang betul-betul dipertimbangkan untuk panggilan Stop
Duration. Dalam skema, jaringan secara terus-menerus
memonitor kedatangan frame-frame di dalam buffer. Jika
penempatan frame yang lain dapat menekan dalam buffer-
occupancy melebihi beberapa threshold, pengiriman akan "stop
message" oleh jaringan ke pengirim end-user menjawab dan
seluruhnya berhenti pada trafik layer-3. Selama parameter
dibawa dalam menentukan "stop message" setelah periode
yang mana boleh mengirim lagi ke trafik.
Teknik prediksi untuk mengatasi kongesti
Teknik menghindari kongesti secara implisit
digunakan metode dasar prediksi dengan metode Kalman-filter,
dengan menggunakan Kalman Congestion Avoidance Scheme
(CAS). Observasi throughput pada level particular virtual circuit
dapat digunakan untuk menyimpulkan mengenai gambaran
status kongesti dalam jaringan. Pengiriman user dapat
digunakan sebagai aksi pencegahan untuk menghindari kongesti
sebelum benar-benar terjadi, atau alternatif/kemungkinan lain
terjadi penambahan jumlah aliran trafik yang diharapkan dapat
mengantisipasi beban pada jaringan.
Skema ini memerlukan 4 (empat) tahap :
- Observasi throughput.
- Membuat prediksi level kongesti.
- Keputusan dibuat sesuai untuk menambah atau mengurangi beban trafik.
- Window ditambahkan atau dikurangi dalam line dengan tegas.
Perputaran diulang pada beberapa preset interval pengamatan.
Kesimpulan
Solusi terbaik bagi kontrol kongesti dalam jaringan Frame Relay adalah satu dasar
dalam penanggulangan kongesti lebih baik dari pada
pendeteksian yang sederhana dan penemuan kembali
(recorvery) dan ini telah ditetapkan dalam rekomendasi
CCITT.
Teknik dasar prediksi kita seringkali menggunakan
pendekatan untuk penanggulangan kongesti dan akan bekerja
ketika jaringan tidak memberikan pemberitahuan adanya
kongesti pada user. Hal ini tidak memerlukan kerja lebih dengan
jaringan dan frame-frame untuk implementasi. Ini seperti halnya
suatu kombinasi dari skema ini dengan beberapa bentuk
pemberitahuan yang eksplisit akan menjadi suatu kekuatan
penuh untuk mencegah terjadinya kongesti di dalam jaringan
Frame Relay.
Daftar pustaka
- A.G. Waters and K.Ab. Hamid, "Congestion Control
for Frame Relay Networks", CDROM
BPPT Jakarta, 1995.
- Darren L.Spohn, "Data Network
Design", McGraw-Hill, Inc., 1993.
- Frank J.Derfler, Jr., "PC Magazine Guide to Linkins LAN'S", Ziff. Davis Press, 1992.
- Kim-Joan Chen and Kiran M.Rege, "A Comparative
Performance Study of Various Congestion for ISDN Frame Relay
Networks", IEEE 1989.
- Lynn A. Neir & David W.Petr, "Time-to-delivery queuing : A Multi Purpose Resource Allocation and Congestion Control Technique", IEEE 1993.
Ir. Syafruddin Syarif tinggal di Bandung
The MSS Spectrum Requirements for The Asia-Pacific
(ELEKTRO No. 6, August 1995)
Introduction
The international telecommunications
community has experienced in the past view years a most
prodigious change in the radio regulation and frequency
spectrum re-allocation. The advent of the new MSS concepts
and its feeder links have led to an avid requirement of new
frequencies, despite of a very limited spectrum resource that
operators operate with many constraints. Such an exigency will
certainly affect the operationability and the future of different
existing installations that make use of the pertinent spectrum
globally. Apparently however the most grieved parties would
certainly be such of the developing nations.
Figure 1 depicts a severe overlapping situation that the future MSS allocated
spectrums will be in conflict with those of the present terrestrial
fixed services.
The coming WRC-95 in Geneva November 1995
shall attempt to shed a light of relevant problems in particular to
pursuing the measures to this very spectrum coordination
equation. Judgement from various operators will seemingly be
predominated by the oblique idea of heavy investment being
made in the past in the realm of fixed services. That a large
amount of existing backbone terrestrial system in place should
prevent the use of MSS system despite its potential to relieve
great many problems in developing very basic
telecommunications infrastructure in most developing countries.
The November 95 conference shall urge some future CPM to
perform a more thorough and realistic study in view of the
terrestrial fixed service-MSS tradeoffs. We have thought that
compromise measures based upon more accurate result of the
MSS bandwidth requirement prediction and existing data on the
present and future investments on the Non-MSS systems, shall
be exercised. This paper present some preliminary analysis to
the said equation.
The MSS Spectrum Requirements
Asia and the Pacific represent a unique but important telecommunications
problem. Here are some statistics underlying that potent
requirement.
- Ensemble of telecommunications-related
parameters of various countries [see Table 1]
- Prediction of mobile, rural and remote communications users which call for
MSS capacity.
We should also note the difficulty in which
terrestrial systems encounter in fulfilling the demand especially
those prevailing in the rural, remote and harsh areas : deserts,
islands, isolated communities, in economically and timely.The
recent studies [CPM] on bandwidth requirements of the MSS
have come up with preliminary results as follows: (Table 2).
MSS Frequency Coordinations Problems
The CPM 95, a conference of
Preparatory Meeting which has been held in Genewa from 22
March to 4 April 1995, has come up with interesting results as
regard to the spectrum sharing problems between MSS and
other services, in particular the Fixed Services. The conference
has also noted different level of difficulties in sharing the
frequency bands, and in view of the necessary introduction of
certain MSS service, options in some regulatory aspects have
been proposed.
In spite of the various WARC92 bands allocated
for the MSS service, however the CPM95 has put a focus on the
bands that will be of immediate interest for the implementations
of some MSS. It seems that there is still a long way to arrive to a
state where significant agreement on the sharing possibilities
based upon coexistence between MSS and the rest of the
services can be achieved. This in part is due to the high
investments already in place for different service, in the
developing countries.
Although some of the problems are under
study, it is clear that the coming WRC will make use of some
results and recommendations of the CPM95, so it is worthwhile if
we could discuss those results at present. The CPM95 finding
are as follows:
- Sharing of Frequency Bands in the 1-3 GHz
between transmitting Stations in FS and E-S MSS (non-
GSO/MSS) (The studies have focussed on sharing in the 1610-
1626.5 MHz and 1970-2010 MHz) [see Table 3]
In view of the
above results, regulatory options as regard to the 1970-2010
MHz bands will eventually be needed for introduction of the MSS
system.
- Sharing of frequency bands in the 1-3 GHz range
between transmitting stations in the FS and the Earth-to-Space
GSO/MSS:
The CPM95 has concluded that co-channel sharing
is not feasible due to severe constraints to be exerted to the FS
transmitting stations. Provision shall be made for the avoidance
of co-channel sharing between the MSS and the FS.3.
- Sharing of frequency bands in the 1-3 GHz range between stations of non-
GSO/MSS Space-to-Earth service and the FS receiving
stations:
Based on the studies undertaken in the 2483.5 - 2500
MHz and 2160 - 2200 MHz bands, sharing between non-
GSO/MSS (space-to-earth) systems and the FS should be
feasible. However, in the long term, sharing difficulties could
arise between non-GSO/MSS systems and the FS.
Accordingly,
considerations should be given to a possible gradual transition
plan in order to enable the FS to migrate to other frequency
bands with no overlap with the MSS allocations between 1-3
GHz.
- Sharing of frequency bands in the 1-3 GHz range
between stations of GSO/MSS Space-to-Earth service and the
FS receiving stations :
It is generally possible to share the
frequencies in the range of 1-3 GHz between the MSS and FS,
as addressed in the draft Recommendations ITU-RIS (Doc 2/7).
Recommendations provides coordination threshold power-flux
density levels that are consistent with the RR 2566 for all the
downlink bands allocated by WARC-92, with the exception of the
2520-2535 MHz band where a more stringent threshold value is
recommended.
- Sharing of frequency bands in the range below
1 GHz between non GSO/MSS service and the FS.
Frequency Bands allocated for the MSS below 1 GHz (Table 4) will be
shared by various other existing services such as Space
Operations, Meteorological Satellites, Meteorological Aids, Space
Research, Radio Navigation-Satellite, Radio Astronomy,
Broadcasting, Fixed and Mobile Service. Whilst the sharing
studies between MSS and Meteorological Aids are not yet
accomplished, the present studies have shown many ways of
alleviating the obstacles in achieving sharing-possible conditions.
Among other methods are : that the MSS systems are to operate
in either a narrow-band, frequency agile fashion to coexist with
terrestrial services, or with wideband, low-power density, spread
spectrum transmissions (that conditions apply to MSS uplink
directions).
The MSS downlink operations shall also exploit
various techniques in view of achieving sharing possible
conditions. These include spread spectrum, orthogonal-
polarizations, and co-channel avoidance procedures.
- Sharing of frequency spectrums in the C, Ku and Ka bands between MSS
Feeder Links, FS and FSS services :
The sharing problems in this
matter lie mostly between non-GSO/MSS Feeder Links and
GSO/FSS networks. There will be outage times experienced by
both systems, (for a codirectional sharing to be exercised) when
an earth station, a non-GSO satellite and a geostationary satellite
will be in line, or nearly in line with each other. This makes the
codirectional sharing solution will be apparently not
feasible.
Method of bidirectional sharing, on the other hand,
seems to be promising albeit certain constraints. Table 3 outlines
the CPM95 study result on the sharing problems between MSS
Feeder links and other services.
Matters Relating to The Date of
Entry into Force of Allocations in the Bands 1980-2010 MHz, and
2170-2200 MHz in Regions 1 and 3
RR 746B, following the
WARC92, states that use of the above bands for MSS services
in Region 1 and Region 3 shall not commence before 1 January
2005. Possible commencement of MSS services will require a
definite prerequisite : clearance in the sharing problems. This
means that every administration shall be prepared for certain
migration plan for its FS networks, especially those which utilize
the frequency bands that will be allocated and utilized by MSS
Earth-to space service. Otherwise, noting a severe sharing
environment prevailing, the MSS introduction will be hampered.
As to with the Space-to-Earth MSS bands case, since it poses
less problems, migration plan of the FS using the associated
bands could be somewhat extended at a later years after2005.The sharing problems in the MSS feeder links, as stated
earlier, can be solved partly by bidirectional scheme. But this
means that redesign is to be made in the MSS feeder links, to
ensure bidirectional sharing with the existing FSS networks. Only
if the MSS planner be ready to modify the specifications timely,
then there will be no significant delay affecting the original
schedule.
Possible Arrangement of Mitigating The Interference
Problem with the MSS frequency band
As a summary, in order to
facilitate the introduction of the MSS, certain procedures can be
made as follows :
MSS Planner :
- Use of narrow-band,
frequency-agile fashion, or
- Wideband, low-power density
spread spectrum transmission uplinks MSS transmission
systems.MSS and FS planners have to exploit at maximum the
following techniques.
- Orthogonally-polarized, low-power
density, spread-spectrum downlinks.
- Co-channel
avoidance.MSS planner shall make its best efforts to
- Use of higer frequency spectrum, i.e. : Upper Ku and Ka bands, for
their feeder links, in view of heavy investment in the C and lower
Ku bands.This will retain at some longer periods the use of the C
and some lower Ku bands by the FSS and FS, which will be
benefited particularly by the developing countries.
FS planner should endeavour and do a diligence in exercising the
- Liberalization of some bands < 1 GHz and between 1 to 3 GHz is
to be exercised.MSS planner shall continue to do a
- Detailed
study about the evolution of the MSS bandwidth requirement.
- Every country is obliged to incorporate in their long term national
plan, as a part of their network modernization framework, to
systematically phase out the FS networks and replace them with
fibre networks.
By Dr. Ir. Arifin Nugroho
[Sajian Utama]
[Sajian Khusus]
[Profil Elektro]
[KOMPUTER]
[KENDALI]
[ENERGI]
[ELEKTRONIKA]
[INSTRUMENTASI]
[PII NEWS]
Please send
comments, suggestions, and criticisms about ELEKTRO INDONESIA.
Click here to
send me email.
© 1996 ELEKTRO ONLINE and INDOSAT NET.
All Rights Reserved.