Nomor 25, Tahun V, April 1999
|
||||
ELEKTRONIKA
|
Sekilas Tentang Pengubahan Daya DC-DC Tipe Peralihan |
|||
Home
Halaman Muka Sajian Utama Komputer Komunikasi Energi |
PendahuluanDalam ELEKTRO edisi nomor 24 yang lalu, telah dibahas dua macam cara pengolahan daya: tipe linier dan tipe peralihan (switching). Tergantung dari jenis aplikasinya, masing masing tipe memiliki kelebihan dan kekurangan. Namun dalam perkembangannya, tipe peralihan nampak semakin terlihat kepopulerannya terutama karena kelebihannya dalam mengubah daya secara jauh lebih efisien dan pemakaian komponen yang ukurannya lebih kecil. Dalam artikel ini, akan dibahas beberapa metodologi yang termasuk dalam tipe peralihan, khususnya yang digunakan untuk mengubah daya DC-DC.Pengubah daya DC-DC (DC-DC Converter) tipe peralihan atau dikenal juga dengan sebutan DC Chopper dimanfaatkan terutama untuk penyediaan tegangan keluaran DC yang bervariasi besarannya sesuai dengan permintaan pada beban. Daya masukan dari proses DC-DC tersebut adalah berasal dari sumber daya DC yang biasanya memiliki tegangan masukan yang tetap. Pada dasarnya, penghasilan tegangan keluaran DC yang ingin dicapai adalah dengan cara pengaturan lamanya waktu penghubungan antara sisi keluaran dan sisi masukan pada rangkaian yang sama. Komponen yang digunakan untuk menjalankan fungsi penghubung tersebut tidak lain adalah switch (solid state electronic switch) seperti misalnya Thyristor, MOSFET, IGBT, GTO. Secara umum ada dua fungsi pengoperasian dari DC Chopper yaitu penaikan tegangan dimana tegangan keluaran yang dihasilkan lebih tinggi dari tegangan masukan, dan penurunan tegangan dimana tegangan keluaran lebih rendah dari tegangan masukan. Prinsip dasar Pengubah DC-DC Tipe PeralihanUntuk lebih memahami keuntungan dari tipe peralihan, kita lihat kembali prinsip pengubahan daya DC-DC tipe linier seperti terlihat pada Gambar 1.
Pada tipe linier, pengaturan tegangan keluaran dicapai dengan menyesuaikan arus pada beban yang besarannya tergantung dari besar arus pada base-nya transistor:
Gambar 2. Pengubah tipe peralihan Pada tipe peralihan, terlihat fungsi transistor sebagai electronic
switch yang dapat dibuka (off) dan ditutup (on). Dengan asumsi bahwa
switch tersebut ideal, jika switch ditutup maka tegangan keluaran akan
sama dengan tegangan masukan, sedangkan jika switch dibuka maka tegangan
keluaran akan menjadi nol. Dengan demikian tegangan keluaran yang dihasilkan
akan berbentuk pulsa seperti pada Gambar 3.
Besaran rata rata atau komponen DC dari tegangan keluaran dapat diturunkan dari persamaan berikut:
Pengubah BuckGambar 4 menunjukkan rangkaian dasar dalam metoda Buck. Dalam metoda ini, tegangan keluaran akan lebih rendah atau sama dengan tegangan masukan. Disamping itu, jika pada pengoperasiannya arus yang mengalir melalui induktor selalu lebih besar dari nol (CCM - Continuous Conduction Mode), maka hubungan antara tegangan keluaran dengan tegangan masukan adalah sebagai berikut:
Gambar 4. Pengubah Buck Keuntungan pada konfigurasi Buck antara lain adalah efisiensi yang tinggi, rangkaiannya sederhana, tidak memerlukan transformer, tingkatan stress pada komponen switch yang rendah, riak (ripple) pada tegangan keluaran juga rendah sehingga penyaring atau filter yang dibutuhkan pun relatif kecil. Kekurangan yang ditemukan misalnya adalah tidak adanya isolasi antara masukan dan keluaran, hanya satu keluaran yang dihasilkan, dan tingkat ripple yang tinggi pada arus masukan. Metoda Buck sering digunakan pada aplikasi yang membutuhkan sistim yang berukuran kecil. Pengubah BoostJika tegangan keluaran yang dinginkan lebih besar dari tegangan masukan, maka rangkaian Boost dapat dipakai. Topologi Boost terlihat pada Gambar 5. Pada operasi CCM, tegangan keluaran dan tegangan masukan diekspresikan seperti:
Gambar 5. Pengubah boost Boost juga memiliki efisiensi tinggi, rangkaian sederhana, tanpa transformer dan tingkat ripple yang rendah pada arus masukan. Namun juga Boost tidak memiliki isolasi antara masukan dan keluaran, hanya satu keluaran yang dihasilkan, dan tingkatan ripple yang tinggi pada tegangan keluaran. Aplikasi Boost mencakup misalnya untuk perbaikan faktor daya (Power Factor), dan untuk penaikan tegangan pada baterai Pengubah Buck-BoostMetoda Buck-Boost tidak lain adalah kombinasi antara Buck dan Boost, seperti terlihat pada Gambar 6, dimana tegangan keluaran dapat diatur menjadi lebih tinggi atau lebih rendah dari tegangan masukan. Dalam operasi CCM, persamaan tegangan yang dipakai adalah:
Gambar 6. Pengubah Buck-Boost Yang menarik untuk dicatat dari Buck-Boost adalah bahwa tegangan keluaran memiliki tanda berlawanan dengan tegangan masukan. Oleh karena itu metoda ini pun ditemui pada aplikasi yang memerlukan pembalikan tegangan (voltage inversion) tanpa transformer. Walaupun memiliki rangkaian sederhana, metoda Buck-Boost memiliki kekurangan seperti tidak adanya isolasi antara sisi masukan dan keluaran, dan juga tingkat ripple yang tinggi pada tegangan keluaran maupun arus keluaran. Pengubah Boost-Buck atau Cuk Cara lain untuk mengkombinasikan metoda Buck dan Boost dapat dilihat
pada Gambar 7 dan dikenal dengan nama Boost-Buck atau Cuk. Seperti halnya
metoda Buck-Boost, tegangan keluaran yang dihasilkan dapat diatur menjadi
lebih tinggi atau lebih rendah dari tegangan masukan. Persamaan tegangan
yang berlaku pada CCM pun sama dengan Buck-Boost (persamaan 6). Metoda
Cuk juga digunakan pada aplikasi yang memerlukan pembalikan tegangan (voltage
inversion) tanpa transformer, namun dengan kelebihan tingkat ripple yang
rendah pada arus masukan maupun arus keluaran.
Sambungannya: Pengubah SEPIC |
|||